Non-Oriented Heegaard Diagrams

Hossein Hatamian

(Taras Shevchenko National University of Kyiv 64/13, Volodymyrska Street, Kyiv, Ukraine) *E-mail:* myowngait@gmail.com

Alexandr Prishlyak

(Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, Ukraine) E-mail: prishlyak@yahoo.com

Let $(F; u_1, u_2; v_1, v_2)$ be a genus 2 Heegaard diagram of a closed 3-manifold M. Here F is a closed surface which decomposes M into two handlebodies H_1 , H_2 of genus 2, u_1 , u_2 are meridians of H_1 , and v_1 , v_2 are meridians of H_2 .

Assume that all crossing points of the meridians are transversal and that the diagram is normalized (the latter means that among the regions into which the meridians split F here are no biangles). The total number of those crossing points is called the *Heegaard complexity* of the diagram.

Let us cut F along u_1 , u_2 . We obtain a sphere with four holes D_1^{\pm} , D_2^{\pm} which are conveniently interpreted as distinguished disks on the sphere. The meridians v_1 , v_2 will then be cut into arcs which join the holes. We agree to depict k parallel arcs as one arc marked by the number $k \geq 0$. We also take into account the orientations of the glued boundaries ∂D_i^{\pm} by assigning (+1) for orientable gluing and (-1) for non-orientable one. Therefore we get (+1, +1), (+1, -1), (-1, +1) and (-1, -1) for pairs of holes.

It is well known that the set of all genus 2 Heegaard diagrams can be decomposed into three types. Each such diagram can be determined by a 7-tuple (a, b, c, d, e, f, g), where a, b, c, d are the arcs joining the holes, e, f determine the gluing maps $\varphi_i \colon \partial D_i^- \to \partial D_i^+$, i = 1, 2, and g is defined to be 0, 1, 2 and 3 for (+1, +1), (+1, -1), (-1, +1) and (-1, -1) respectively.

In order to give exact descriptions of φ_1 , we introduce topological symmetries $s_i \colon \partial D_i^- \to \partial D_i^+$ and topological rotations $r_i: \partial D_i^- \to \partial D_i^+$ by the following results:

- (1) $s_i: \partial D_i^- \cap (v_1 \cup v_2) \to \partial D_i^+ \cap (v_1 \cup v_2)$ such that the endpoint of each *b*-arc (respectively, *c*-arc) is taken to the other endpoint of the same arc.
- (2) r_i shifts each point of $D_i^{+} \cap (v_1 \cup v_2)$ to the next point of $D_i^{+} \cap (v_1 \cup v_2)$.

Now we define φ_1 , φ_2 as follows: $\varphi_1 = r_1^e s_1$, and $\varphi_2 = r_2^f s_2$.

A Heegaard diagram $(F; u_1, u_2; v_1, v_2)$ of genus 2 has type I, II or III if it can be described as follows: Type I

- Each a-arc joins D₁⁺ and D₂⁺ as well as D₁⁻ and D₂⁻.
 Each b-arc joins D₁⁺ and D₁⁻.
 Each c-arc joins D₂⁺ and D₂⁻.
 Each d-arc joins D₁⁺ and D₂⁻ as well as D₁⁻ and D₂⁺.

Type II

• Each *a*-arc, *b*-arc and *d*-arc can be described in the same way as type I while each c-arc joins D_1^+ and D_1^- .

Type III

• Each *a*-arc, *b*-arc and *c*-arc can be described in the same way as type II while each *d*-arc is a loop with ends at D_1^+ and D_1^- embracing D_2^+ and D_2^- respectively.

Theorem 1. If the Heegaard complexity of a non-orientable 3-manifold M is no more than 5, then M is homeomorphic to $L_{p,q} \# S^1 \widetilde{\times} S^2$.

There exists a manifold of complexity 6 that is not homeomorphic to $L_{p,q} \# S^1 \widetilde{\times} S^2$. Its diagram can be represented by the 7-tuple (1, 1, 1, 1, 0, 0, 3).

References

[1] S.V. Matveev, Algorithmic topology and classification of 3-manifolds, volume 9, Springer, Berlin, 2007.